Real interpolation of Sobolev spaces

نویسندگان

  • Nadine Badr
  • NADINE BADR
چکیده

We prove that W 1 p is a real interpolation space between W 1 p1 and W 1 p2 for p > q0 and 1 ≤ p1 < p < p2 ≤ ∞ on some classes of manifolds and general metric spaces, where q0 depends on our hypotheses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstract Hardy-Sobolev spaces and interpolation

Hardy-Sobolev spaces and interpolation N. Badr Institut Camille Jordan Université Claude Bernard Lyon 1 UMR du CNRS 5208 F-69622 Villeurbanne Cedex [email protected] F. Bernicot Laboratoire de Mathématiques Université de Paris-Sud UMR du CNRS 8628 F-91405 Orsay Cedex [email protected] October 19, 2010 Abstract The purpose of this work is to describe an abstract theory of Ha...

متن کامل

Notes on Limits of Sobolev Spaces and the Continuity of Interpolation Scales

We extend lemmas by Bourgain-Brezis-Mironescu (2001), and Maz’ya-Shaposhnikova (2002), on limits of Sobolev spaces, to the setting of interpolation scales. This is achieved by means of establishing the continuity of real and complex interpolation scales at the end points. A connection to extrapolation theory is developed, and a new application to limits of Sobolev scales is obtained. We also gi...

متن کامل

Real interpolation of Sobolev spaces associated to a weight

We hereby study the interpolation property of Sobolev spaces of order 1 denoted by W 1 p,V , arising from Schrödinger operators with positive potential. We show that for 1 ≤ p1 < p < p2 < q0 with p > s0, W 1 p,V is a real interpolation space between W 1 p1,V and W 1 p2,V on some classes of manifolds and Lie groups. The constants s0, q0 depend on our hypotheses.

متن کامل

Maximal inequalities for dual Sobolev spaces W − 1 , p and applications to interpolation

We firstly describe a maximal inequality for dual Sobolev spaces W−1,p. This one corresponds to a “Sobolev version” of usual properties of the Hardy-Littlewood maximal operator in Lebesgue spaces. Even in the euclidean space, this one seems to be new and we develop arguments in the general framework of Riemannian manifold. Then we present an application to obtain interpolation results for Sobol...

متن کامل

Interpolation of Banach Spaces by the Γ-method

In this note we study some basic properties of the γinterpolation method introduced in [6] e.g. interpolation of Bochner spaces and interpolation of analytic operator valued functions in the sense of Stein. As applications we consider the interpolation of almost summing operators (in particular γ-radonifying and Hilbert-Schmidt operators) and of γ-Sobolev spaces as introduced in [6]. We also co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008